Elastic and ductile design of multi-storey cross-lam massive wooden buildings under seismic actions

M. Fragiacomo(1), B. Dujic(2), I. Sustersic(2)

(1) Associate Professor, Department of Architecture, Design and Urban Planning, University of Sassari, Palazzo del Pou Salit, Piazza Duomo 6, 07041 Alghero, Italy, Email: fragiacomo@uniss.it

(2) Research Director and PhD candidate, CBD d.o.o. - Contemporary Building Design Company, Lopata 19g, 3000 Celje, Slovenia, Emails: bruno.dujic@cbd.si & iztok.sustersic@cbd.si
Outline

• **Introduction** on crosslam buildings and seismic design
• **Provisions to ensure ductile failure** mechanisms
• **Evaluation of overstrength factors**
• **Case study building: elastic and nonlinear (pushover) analysis**
• **Influence of connection ductility on the seismic performance** of xlam buildings
• **Conclusions**
Crosslam Buildings

Cross-laminated panels: made of layers of boards, with the adjacent layers glued at 90°
Structural details - Connections

Wall-foundation connections: using metal brackets with 10 φ6 mm nails (or screws)

Wall-to-wall connections: using φ8 mm screws @ 300 mm c/c

Horizontal loads in wall panels transferred in bearing to bespoke shear plates

RC 1st floor slab

≤ 500 mm
Seismic Design

Brittle structural behaviour: use elastic design spectrum: $S_d = S_e$

(Elastic) design for full earthquake actions

Larger cross-sections required

Ductile structural behaviour: use reduced design spectrum: $S_d = S_e/q$, $q=1.5-5$

(Elastic or nonlinear) design for reduced earthquake actions

Smaller cross-sections obtained, but....

Need to use Capacity Based Design
Capacity based design

The brittle members (timber panels) must be designed for the overstrength of the ductile members (connections):

\[E_{d'} = \gamma_{Rd} \cdot \gamma_{od} \cdot E_d \]

Strength demand in the brittle member to design for

Overstrength factor

\[\gamma_{Rd} = \frac{F_{0.95}}{F_d} \]

Overdesign factor

\[\gamma_{od} = \frac{F_d}{E_d} \]

Strength demand due to the reduced elastic spectrum \(S_e/q \)
Open questions:

- No overstrength value suggested by Eurocode 8 for timber (for steel and r.c.: $\gamma_{Rd} = 1.1 - 1.3$; $\gamma_{Rd} = 2.0$ for timber in New Zealand Standard)

- No specific provisions for crosslam buildings on how to achieve a ductile failure mechanism

- Lack of indications on how to model a crosslam building, both for elastic and nonlinear (pushover) seismic analysis

- No information on the effect of connection ductility on the seismic performance of crosslam buildings
Choice of a ductile failure mechanism for multi-storey cross-lam buildings

- **Ductility** achieved only in the connections
- Desirable failure mechanisms with nails / screws deforming instead of rotating – more energy dissipation
- In bracket connectors loaded in shear, longer nails (60 mm) provide higher strength and ductility
- In bracket connectors loaded in tension, longer nails (60 mm) prevent plug shear failure