The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems

Prof. Dr. Michael Havbro Faber

Swiss Federal Institute of Technology
ETH Zurich, Switzerland
Contents of Today's Lecture

• Motivation, overview and organization of the course

• Introduction to non-linear analysis

• Formulation of the continuum mechanics incremental equations of motion
Motivation, overview and organization of the course

• Motivation

In FEM 1 we learned about the **steady state analysis** of linear systems

however,

the systems we are dealing with in structural engineering are generally not steady state and also not linear

We must be able to assess the need for a particular type of analysis and we must be able to perform it
Motivation, overview and organization of the course

• Motivation

What kind of problems are not steady state and linear?

E.g. when the:

material behaves non-linearly

deflections become big (p-Δ effects)

loads vary fast compared to the eigenfrequencies of the structure

General feature: Response becomes load path dependent
Motivation, overview and organization of the course

• Motivation

What is the “added value” of being able to assess the non-linear non-steady state response of structures?

E.g. assessing the:

- structural response of structures to extreme events (rock-fall, earthquake, hurricanes)

- performance (failures and deformations) of soils

- verifying simple models
Motivation, overview and organization of the course

• Collapse Analysis of the World Trade Center
Motivation, overview and organization of the course

- Collapse Analysis of the World Trade Center
Motivation, overview and organization of the course

- Analysis of ultimate collapse capacity of jacket structure
Motivation, overview and organization of the course

- Analysis of ultimate collapse capacity of jacket structure
Motivation, overview and organization of the course

• Analysis of soil performance
Motivation, overview and organization of the course

- Analysis of bridge response

Mode 1: 0.356257 Hz
Mode 2: 0.422196 Hz
Mode 3: 0.429367 Hz
Mode 4: 0.468655 Hz
Motivation, overview and organization of the course

Steady state problems (Linear/Non-linear):

The response of the system does not change over time

\[KU = R \]

Propagation problems (Linear/Non-linear):

The response of the system changes over time

\[M\ddot{U}(t) + C\dot{U}(t) + KU(t) = R(t) \]

Eigenvalue problems:

No unique solution to the response of the system

\[Av = \lambda Bv \]
Motivation, overview and organization of the course

• Organization

The lectures will be given by:

M. H. Faber

Exercises will be organized/attended by:

Jianjun Qin

By appointment, HIL E13.1.
Motivation, overview and organization of the course

• Organization

PowerPoint files with the presentations will be uploaded on our homepage one day in advance of the lectures

http://www.ibk.ethz.ch/fa/education/FE_II

The lecture as such will follow the book:

"Finite Element Procedures" by K.J. Bathe, Prentice Hall, 1996
Motivation, overview and organization of the course

• Overview

<table>
<thead>
<tr>
<th>Date</th>
<th>Pages</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.09.2009</td>
<td>485-502</td>
<td>Non-linear Finite Element Calculations in solids and structural mechanics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Introduction to non-linear calculations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The incremental approach to continuum mechanics</td>
</tr>
<tr>
<td>25.09.2009</td>
<td>502-528</td>
<td>Non-linear Finite Element Calculations in solids and structural mechanics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Deformation gradients, strain and stress tensors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The Langrangian formulation – only material non-linearity</td>
</tr>
<tr>
<td>02.10.2009</td>
<td>538-548</td>
<td>Non-linear Finite Element Calculations in solids and structural mechanics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Displacement based iso-parametric finite elements in continuum mechanics</td>
</tr>
<tr>
<td>09.10.2009</td>
<td>548-560</td>
<td>Non-linear Finite Element Calculations in solids and structural mechanics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Displacement based iso-parametric finite elements in continuum mechanics</td>
</tr>
</tbody>
</table>
Motivation, overview and organization of the course

• Overview

16.10.2009 561-578 Non-linear Finite Element Calculations in solids and structural mechanics
- Total Langrangian formulation
- Extended Lagrangian formulation
- Structural elements

23.10.2009 581-617 Non-linear Finite Element Calculations in solids and structural mechanics
- Introduction to constitutive relations
- Non-linear constitutive relations

30.10.2009 622-640 Non-linear Finite Element Calculations in solids and structural mechanics
- Contact problems
- Practical considerations

06.11.2009 768-784 Dynamical Finite Element Calculations
- Introduction
- Direct integration methods
Motivation, overview and organization of the course

Overview

13.11.2009 785-800 Dynamical Finite Element Calculations
- Mode superposition

20.11.2009 801-815 Dynamical Finite Element Calculations
- Analysis of direct integration methods

27.11.2009 824-830 Dynamical Finite Element Calculations
- Solution of dynamical non-linear problems

04.12.2009 887-910 Solution of Eigen value problems
- The vector iteration method

11.12.2009 911-937 Solution of Eigen value problems
- The transformation method

18.12.2009 Introduction to FEM-software
Introduction to non-linear analysis

• Previously we considered the solution of the following linear and static problem:

\[KU = R \]

for these problems we have the convenient property of linearity, i.e:

\[KU = \lambda R, \quad \lambda = 1 \]

↓

\[U^* = \lambda U, \quad \lambda \neq 1 \]

If this is not the case we are dealing with a non-linear problem!
Introduction to non-linear analysis

• Previously we considered the solution of the following linear and static problem:

\[KU = R \]

we assumed:

small displacements when developing the stiffness matrix \(K \) and the load vector \(R \), because we performed all integrations over the original element volume

that the \(B \) matrix is constant independent of element displacements

the stress-strain matrix \(C \) is constant

boundary constraints are constant
Introduction to non-linear analysis

Classification of non-linear analyses

<table>
<thead>
<tr>
<th>Type of analysis</th>
<th>Description</th>
<th>Typical formulation used</th>
<th>Stress and strain measures used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materially-nonlinear only</td>
<td>Infinitesimal displacements and strains; stress train relation is non-linear</td>
<td>Materially-nonlinear-only (MNO)</td>
<td>Engineering strain and stress</td>
</tr>
<tr>
<td>Large displacements, large rotations but small strains</td>
<td>Displacements and rotations of fibers are large; but fiber extensions and angle changes between fibers are small; stress strain relationship may be linear or non-linear</td>
<td>Total Lagrange (TL)</td>
<td>Second Piola-Kirchoff stress, Green-Lagrange strain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated Lagrange (UL)</td>
<td>Cauchy stress, Almansi strain</td>
</tr>
<tr>
<td>Large displacements, large rotations and large strains</td>
<td>Displacements and rotations of fibers are large; fiber extensions and angle changes between fibers may also be large; stress strain relationship may be linear or non-linear</td>
<td>Total Lagrange (TL)</td>
<td>Second Piola-Kirchoff stress, Green-Lagrange strain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated Lagrange (UL)</td>
<td>Cauchy stress, Logarithmic strain</td>
</tr>
</tbody>
</table>
Introduction to non-linear analysis

- Classification of non-linear analyses

\[\Delta \]

\[P \]

\[\frac{P}{2} \]

\[L \]

\[\frac{P}{2} \]

\[L \]

\[\sigma = \frac{P}{A} \]

\[\varepsilon = \frac{\sigma}{E} \]

\[\Delta = \varepsilon L \]

Linear elastic (infinitesimal displacements)
Introduction to non-linear analysis

- Classification of non-linear analyses

\[\varepsilon = \frac{\sigma_y}{E} + \frac{\sigma - \sigma_y}{E_T} \]

\[\varepsilon < 0.04 \]

Materially nonlinear only (infinitesimal displacements, but nonlinear stress-strain relation)
Introduction to non-linear analysis

- Classification of non-linear analyses

Large displacements and large rotations but small strains (linear or nonlinear material behavior)
Introduction to non-linear analysis

- Classification of non-linear analyses

Large displacements, large rotations and large strains (linear or nonlinear material behavior)
Introduction to non-linear analysis

- Classification of non-linear analyses

Chang in boundary conditions
Introduction to non-linear analysis

- Example: Simple bar structure

\[\begin{align*}
\text{Area} &= 1 \text{cm}^2 \\
L_a &= 10 \text{cm} \\
L_b &= 5 \text{cm}
\end{align*} \]

\[\begin{align*}
\sigma &= \text{yield stress} \\
\epsilon &= \text{yield strain}
\end{align*} \]

\[\begin{align*}
E &= 10^7 \text{ N/cm}^2 \\
E_T &= 10^5 \text{ N/cm}^2 \\
\sigma_y : &\text{ yield stress} \\
\epsilon_y : &\text{ yield strain}
\end{align*} \]
Introduction to non-linear analysis

- Example: Simple bar structure

\[t \varepsilon_a = \frac{t u}{L_a}, \quad t \varepsilon_b = -\frac{t u}{L_b} \]

\[t R + t \sigma_b A = t \sigma_a A \]

\[t \varepsilon = \frac{t \sigma}{E} \quad \text{(elastic region)} \]

\[t \varepsilon = \varepsilon_y + \frac{t \sigma - \sigma_y}{E} \quad \text{(plastic region)} \]

\[\Delta \varepsilon = \frac{\Delta \sigma}{E} \quad \text{(unloading)} \]
Introduction to non-linear analysis

- Example: Simple bar structure

Both sections elastic

\[\sigma_a = \frac{\tau R}{3A}, \sigma_b = -\frac{2\tau R}{3A} \]

\[\tau R = E A \tau u \left(\frac{1}{L_a} + \frac{1}{L_b} \right) \Rightarrow \tau u = \frac{\tau R}{3 \cdot 10^6} \]
Introduction to non-linear analysis

• Example: Simple bar structure

<table>
<thead>
<tr>
<th>Section a</th>
<th>Section b</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_a = 10 \text{cm}$</td>
<td>$L_b = 5 \text{cm}$</td>
</tr>
</tbody>
</table>

Area = 1 cm2

$E = 10^7 \text{N/cm}^2$

$E_T = 10^5 \text{N/cm}$

σ_y: yield stress

ε: yield strain

Section a is elastic while section b is plastic

\[t^* R = \frac{3}{2} \sigma_y A \]

\[\sigma_a = E \frac{t^* u}{L_a}, \sigma_b = -E_T \left(\frac{t^* u}{L_b} - \varepsilon_y \right) - \sigma_y \]

\[t^* R = \frac{EA t^* u}{L_a} + \frac{E_T A t^* u}{L_b} - E_T \varepsilon_y A + \sigma_y A \Rightarrow \]

\[t^* u = \frac{t^* R / A + E_T \varepsilon_y - \sigma_y}{E / L_a + E / L_b} = \frac{t^* R}{1.02 \cdot 10^6} - 1.9412 \cdot 10^{-2} \]
Introduction to non-linear analysis

• What did we learn from the example?

The basic problem in general nonlinear analysis is to find a state of equilibrium between externally applied loads and element nodal forces

\[tR - tF = 0 \]

\[tR = tR_B + tR_S + tR_C \]

\[tF = tR_I \]

\[tF = \sum_m \int_{V^{(m)}} tB^{(m)T} t\tau^{(m)} t dV^{(m)} \]

We must achieve equilibrium for all time steps when incrementing the loading

Very general approach

includes implicitly also dynamic analysis!
Introduction to non-linear analysis

• The basic approach in incremental analysis is

\[t + \Delta t \mathbf{R} - (t + \Delta t) \mathbf{F} = 0 \]

assuming that \(t + \Delta t \mathbf{R} \) is independent of the deformations we have

\[t + \Delta t \mathbf{F} = t \mathbf{F} + \mathbf{F} \]

We know the solution \(t \mathbf{F} \) at time \(t \) and \(\mathbf{F} \) is the increment in the nodal point forces corresponding to an increment in the displacements and stresses from time \(t \) to time \(t + \Delta t \) this we can approximate by

\[\mathbf{F} = t \mathbf{KU} \]

\[\mathbf{Tangent \ stiffness \ matrix} \quad t \mathbf{K} = \frac{\partial t \mathbf{F}}{\partial t \mathbf{U}} \]
Introduction to non-linear analysis

• The basic approach in incremental analysis is

We may now substitute the tangent stiffness matrix into the equilibrium relation

\[\dot{t}KU = \dot{t + \Delta t}R - \dot{t}F \]

\[\downarrow \]

\[\dot{t + \Delta t}U = \dot{t}U + U \]

which gives us a scheme for the calculation of the displacements

the exact displacements at time \(t + \Delta t \) correspond to the applied loads at \(t + \Delta t \) however we only determined these approximately as we used a tangent stiffness matrix – thus we may have to iterate to find the solution
Introduction to non-linear analysis

- The basic approach in incremental analysis is

We may use the **Newton-Raphson** iteration scheme to find the equilibrium within each load increment

\[
K^{(i-1)}(i) \Delta U^{(i)} = t^{+\Delta t} R - t^{+\Delta t} F^{(i-1)} \quad \text{(out of balance load vector)}
\]

\[
t^{+\Delta t} U^{(i)} = t^{+\Delta t} U^{(i-1)} + \Delta U^{(i)}
\]

with initial conditions

\[
t^{+\Delta t} U^{(0)} = t^{0} U; \quad t^{+\Delta t} K^{(0)} = t^{0} K; \quad t^{+\Delta t} F^{(0)} = t^{0} F
\]
Introduction to non-linear analysis

- The basic approach in incremental analysis is

It may be expensive to calculate the tangent stiffness matrix and,

in the **Modified Newton-Raphson** iteration scheme it is thus only calculated in the beginning of each new load step

in the **quasi-Newton** iteration schemes the secant stiffness matrix is used instead of the tangent matrix

Method of Finite Elements II
Introduction to non-linear analysis

• We look at the example again – simple bar (two load steps)

\[(tK_a + tK_b)\Delta u^{(i)} = t^{+\Delta t} R - (t^{+\Delta t} F_a^{(i-1)} - t^{+\Delta t} F_b^{(i-1)})\]

\[t^{+\Delta t} u^{(i)} = t^{+\Delta t} u^{(i-1)} + \Delta u^{(i)}\]

with initial conditions

\[t^{+\Delta t} u^{(0)} = t u; \quad t^{+\Delta t} F_a^{(0)} = t F_a \quad t^{+\Delta t} F_b^{(0)} = t F_b\]

\[tK_a = \frac{tCA}{L_a}; \quad tK_b = \frac{tCA}{L_b}\]

\[tC = \begin{cases} & E \quad \text{if section is elastic} \\ & E_T \quad \text{if section is plastic} \end{cases}\]
Introduction to non-linear analysis

• We look at the example again – simple bar

Load step 1: $t = 1$:

$\left(^0 K_a + ^0 K_b \right) \Delta u^{(1)} = 1 R - \frac{1}{1} F_{a}^{(0)} - \frac{1}{1} F_{b}^{(0)}$

\[\downarrow \]

$\Delta u^{(1)} = \frac{2 \times 10^4}{10^7 \left(\frac{1}{10} + \frac{1}{5} \right)} = 6.6667 \times 10^{-3}$

Iteration 1: ($i = 1$)

$1 u^{(1)} = 1 u^{(0)} + \Delta u^{(1)} = 6.6667 \times 10^{-3}$

$1 \epsilon_a^{(1)} = \frac{1 u^{(1)}}{L_a} = 6.6667 \times 10^{-4} < \epsilon_Y$ (elastic section!)

$1 \epsilon_b^{(1)} = \frac{1 u^{(1)}}{L_b} = 1.3333 \times 10^{-3} < \epsilon_Y$ (elastic section!)

$1 F_a^{(1)} = 6.6667 \times 10^3$; $1 F_b^{(1)} = 1.3333 \times 10^4$

Convergence in one iteration!

$\left(^0 K_a + ^0 K_b \right) \Delta u^{(2)} = 1 R - \frac{1}{1} F_{a}^{(1)} - \frac{1}{1} F_{b}^{(1)} = 0$

$1 u = 6.6667 \times 10^{-3}$
Introduction to non-linear analysis

- We look at the example again – simple bar

Load step 2: \(t = 2 \):

\[
(1K_a + 1K_b)\Delta u^{(1)} = 2R - 2F_a^{(0)} - 2F_b^{(0)}
\]

\[
\Delta u^{(1)} = \frac{(4 \times 10^3) - (6.6667 \times 10^3) - (1.333 \times 10^4)}{10^7 \left(\frac{1}{10} + \frac{1}{5} \right)} = 6.6667 \times 10^{-3}
\]

Iteration 1: \(i = 1 \)

\[
2u^{(1)} = 2u^{(0)} + \Delta u^{(1)} = 1.3333 \times 10^{-2}
\]

\[
2\varepsilon_a^{(1)} = 1.3333 \times 10^{-3} < \varepsilon_Y \quad \text{(elastic section!)}
\]

\[
2\varepsilon_b^{(1)} = 2.6667 \times 10^{-3} > \varepsilon_Y \quad \text{(plastic section!)}
\]

\[
1F_a^{(1)} = 1.3333 \times 10^4; \quad 1F_b^{(1)} = (ET(2\varepsilon_b^{(1)} - \varepsilon_Y) + \sigma_Y)A = 2.0067 \times 10^4
\]

\[
(1K_a + 1K_b)\Delta u^{(2)} = 2R - 2F_a^{(1)} - 2F_b^{(1)} \Rightarrow \Delta u^{(2)} = 2.2 \times 10^{-3}
\]
Introduction to non-linear analysis

• We look at the example again – simple bar

<table>
<thead>
<tr>
<th>i</th>
<th>$\Delta u^{(i)}$</th>
<th>$u^{(i)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.45E-03</td>
<td>1.55E-02</td>
</tr>
<tr>
<td>3</td>
<td>1.45E-03</td>
<td>1.70E-02</td>
</tr>
<tr>
<td>4</td>
<td>9.58E-04</td>
<td>1.79E-02</td>
</tr>
<tr>
<td>5</td>
<td>6.32E-04</td>
<td>1.86E-02</td>
</tr>
<tr>
<td>6</td>
<td>4.17E-04</td>
<td>1.90E-02</td>
</tr>
<tr>
<td>7</td>
<td>2.76E-04</td>
<td>1.93E-02</td>
</tr>
</tbody>
</table>
The continuum mechanics incremental equations

- The basic problem:

We want to establish the solution using an incremental formulation

The equilibrium must be established for the considered body in its current configuration

In proceeding we adopt a Lagrangian formulation where we track the movement of all particles of the body (located in a Cartesian coordinate system)

Another approach would be an Eulerian formulation where the motion of material through a stationary control volume is considered
The continuum mechanics incremental equations

- The basic problem:

\[\delta \mathbf{u} = \begin{pmatrix} \delta u_1 \\ \delta u_2 \\ \delta u_3 \end{pmatrix} \]

Configuration corresponding to variation in displacements \(\delta \mathbf{u} \) at \(t + \Delta t \).

Configuration at time \(t \):
- Surface area \(S \)
- Volume \(V \)

Configuration at time \(t + \Delta t \):
- Surface area \(S + \Delta S \)
- Volume \(V + \Delta V \)

\(x_1 (\text{or} \quad 0 x_1, \quad t x_1, \quad t + \Delta t x_1) \)
The continuum mechanics incremental equations

• The Lagrangian formulation

We express equilibrium of the body at time \(t+\Delta t \) using the principle of virtual displacements

\[
\int_{t+\Delta \mathcal{V}} (t+\Delta t) \tau_{ij} \delta e_{ij} d(t+\Delta t) V = (t+\Delta t) \mathcal{R}
\]

\(t+\Delta t \tau \) : Cartesian components of the Cauchy stress tensor

\[\delta e_{ij} = \frac{1}{2} \left(\frac{\partial \delta u_i}{\partial t+\Delta t x_j} + \frac{\partial \delta u_j}{\partial t+\Delta t x_i} \right) \] strain tensor corresponding to virtual displacements

\(\delta u_i \) : Components of virtual displacement vector imposed at time \(t + \Delta t \)

\(t+\Delta t x_i \) : Cartesian coordinate at time \(t + \Delta t \)

\(t+\Delta t V \) : Volume at time \(t + \Delta t \)

\[
(t+\Delta t) \mathcal{R} = \int_{t+\Delta \mathcal{V}} (t+\Delta t) f_i^B \delta u_i d(t+\Delta t) V + \int_{t+\Delta \mathcal{S}_f} (t+\Delta t) f_i^S \delta u_i^S d(t+\Delta t) S
\]
The continuum mechanics incremental equations

- The Lagrangian formulation

We express equilibrium of the body at time \(t + \Delta t \) using the principle of virtual displacements

\[
R = \int_{V}^{t+\Delta t} f_i^B \delta u_i dV + \int_{S_f}^{t+\Delta t} f_i^S \delta u_i^S dS + \Delta t \delta u
\]

where

- \(f_i^B \): externally applied forces per unit volume
- \(f_i^S \): externally applied surface tractions per unit surface
- \(S_f \): surface at time \(t + \Delta t \)
- \(\delta u_i^S \): \(\delta u_i \) evaluated at the surface \(t+\Delta t S_f \)
The continuum mechanics incremental equations

- The Lagrangian formulation

We recognize that our derivations from linear finite element theory are unchanged – but applied to the body in the configuration at time $t + \Delta t$
The continuum mechanics incremental equations

- In the further we introduce an appropriate notation:

Coordinates and displacements are related as:

\[\dot{x}_i = \dot{0}x_i + \dot{u}_i \]
\[\dot{t+\Delta t}x_i = \dot{0}x_i + \dot{t+\Delta t}u_i \]

Increments in displacements are related as:

\[\dot{u}_i = \dot{t+\Delta t}u_i - \dot{t}u_i \]

Reference configurations are indexed as e.g.:

\[\dot{t+\Delta t}0f_i^S \]
where the lower left index indicates the reference configuration

\[\dot{t+\Delta t}t_{ij} = \dot{t+\Delta t}t_{ij} \]

Differentiation is indexed as:

\[\dot{t+\Delta t}0u_{i,j} = \frac{\partial \dot{t+\Delta t}u_i}{\partial \dot{0}x_j} , \quad \dot{0}x_{m,n} = \frac{\partial \dot{0}x_m}{\partial \dot{t+\Delta t}x_n} \]